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Numerical prediction of ac electro-osmotic flows around polarized electrodes
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In this paper we present an interactive numerical method that can predict ac electro-osmotic flows around
completely polarized electrodes. In this method the slip velocity on the electrode surface is calculated by
numerically solving the Laplace equation for the potential in the bulk coupled with the dynamical equation for
the surface charge density on the electrodes; here the dynamical equation has been derived from the asymptotic
solutions of the Poisson-Nernst-Planck equation for the potential drop across the electrical thin layer near the
electrode. A unique feature of this study is that the effect of nonspecific ion adsorption is considered. The
numerical code was applied to the two-dimensional ac electro-osmotic flow above a pair of coplanar elec-
trodes, and the solutions compared well with the experimental data reported in the literature. We investigated

the effect of various parameters on the slip velocity distribution, such as the ac frequency, the electrode length,
the effective Stern-layer thickness, and the adsorption coefficients.

DOI: 10.1103/PhysRevE.79.046309

I. INTRODUCTION

Consider a confined space filled with a liquid solution
with cations and anions. When an ac potential is applied to a
pair of coplanar electrodes patterned on the boundary sur-
face, both ions are alternately attracted to and repelled from
the electrode surfaces giving rise to nonzero charge distribu-
tion within electrical thin layers, called the Debye layer or
more precisely the inner layer (refer to Suh and Kang [1] for
the term “inner layer”). This modifies the electric field and
brings nonzero tangential component of the field in the lay-
ers. Since both the charge and electric field change their
signs simultaneously during one period of ac, the time aver-
age of the electric force exerted on each of the ions is non-
zero. Then the surrounding fluid is dragged by the viscous
action yielding a steady flow around the electrodes, which is
called the ac electro-osmotic flow.

Recently, increased attention has been given to the appli-
cation of the concept of ac electro-osmotic flows to pumping
of liquid in microfluidics. The primary element for fluid
pumping is composed of a pair of asymmetric electrodes.
Ajdari [2] first suggested using asymmetric electrode arrays
in pumping liquids in microscales and addressed many pos-
sible configurations of electrode arrays for enhancement of
pumping speed. Later, Brown et al. [3] presented slip-
velocity data measured above an array of asymmetric pairs
of electrodes for pumping water. They stressed that to im-
prove their simple model various effects must be combined
such as the Stern-layer effect and ion motion within double
layers etc. Studer ef al. [4,5] reported fabrication of an inte-
grated pumping system utilizing ac electro-osmosis and in-
vestigated the performance as well as feasibility of their sys-
tem for use as an element in a lab-on-a-chip device. The
measured pumping speed reached up to 500 um/s with only
a few volts, and interestingly enough they observed reversal
flows. Mpholo er al. [6] showed that by placing two aniso-
tropic arrays of indium tin oxide electrodes in a channel they
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can attain the pumping velocity as much as 450 um/s. Olsen
et al. [7] extended the existing theory in order to study the
effect of the confinement of the channel geometry and the
Faradaic injection for ac electro-osmotic pumping. Brask et
al. [8] reported an ac electro-osmotic pump supplemented by
bubble-free palladium and rectifying polymer membrane
valves. The electrode pair used for the pumping need not
necessarily be coplanar. The Bazant group [9-11] demon-
strated that nonplanar structure of the electrode pairs indeed
provided faster flows.

Application of the ac electro-osmotic phenomenon to mi-
crofluidics requires development of theoretical models that
can predict the slip velocity on the electrode walls with rea-
sonable accuracy but should be as simple as possible. In
microscales, Debye layers are so thin compared with the
other geometrical size that doing numerical simulation for
the full ion transport equations, i.e., the Nernst-Planck (NP)
equation, together with the Poisson equation for the potential
over the whole domain including the Debye layers is not
efficient. Therefore appropriate modeling of the ion transport
within the layers is demanded. Gonzalez et al. [12] proposed
a simple capacitor model to verify the magnitude of the slip
velocity measured on the coplanar electrode pair. However,
the predicted velocity turned out to be much greater than the
measured one. Later, Green et al. [13] refined their capacitor
model by introducing the effect of potential drop across the
compact (Stern) layer. They could predict their measured
data with fairly good accuracy but in doing so they had to
employ a nonlinear impedance-frequency relationship ob-
tainable through experiments. Application of the ac electro-
osmosis to the DNA concentration has been tried by Brown
and Meinhart [14] with the electrode arrangement very simi-
lar to that used by Wong ef al. [15], and they revealed that
the numerical results were two orders of magnitude greater
than the measured ones. Further, the predicted critical fre-
quency, at which the slip velocity becomes maximum, was
also more than two orders of magnitude smaller than the
experimental data. The contribution of the Bazant group
[16-19] focused on the transient process of the ion transport
under the different name ‘induced-charge electro-osmosis’
for the similar phenomenon. Their capacitor model also
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showed deviation from the experimental observation.

Very recently Suh and Kang [1] showed that under ac
electric field the electric layer must be of a triple-layer struc-
ture composed of the Stern layer, inner layer (usually called
diffuse layer), and middle layer. They have demonstrated that
ion depletion can happen in the middle layer at high external
potentials corresponding to a strongly nonlinear regime,
which is the primary reason for the breakdown of the weakly
nonlinear model. They have also proposed an interactive nu-
merical scheme for solving the Laplace equation for the bulk
potential coupled by a dynamic equation representing the
evolution of the surface charge on the electrodes. They ap-
plied their interactive numerical method to the one-
dimensional problem for the ion transport in between a pair
of facing electrodes and the results were proved to be in
excellent agreement with those given by the full equations.
They have finally proposed to include an ion-adsorption
model in the dynamic equation for the surface charge that
was proven to reduce the magnitude of the slip velocity as
much as needed without affecting the critical frequency as
much.

In this paper we apply our model proposed in [1] relevant
for weakly nonlinear cases to the two-dimensional problem
of ac electro-osmosis above a pair of coplanar symmetric
electrodes. The purpose of this study is to confirm the valid-
ity of our model by applying it to a two-dimensional (2D)
model flow and comparing the numerical results with the
experimental data presented by Green et al. [13].

In the following section, we present the governing equa-
tions, derivation of the slip velocity, and details of the nu-
merical methods. The numerical results are then presented
and discussed in Sec. III. Important parameters involved in
the numerical simulation are addressed in the first part of this
section. The main code is developed based on the trans-
formed coordinates so that very fine grids can be built near
the leading edge of the electrodes. The developed code is
validated by comparing the results obtained with different
grid resolutions and also by comparing the results with the
ones given by the code developed with the Cartesian coordi-
nates. We next investigate the effect of various parameters
including the ac frequency, the electrode length as well as the
domain size, the effective Stern-layer thickness, and the ad-
sorption, etc. Then, we demonstrate the successful matching
of our numerical slip velocity with the data reported by
Green et al. [13] for two kinds of electrolytes. In the last part
of Sec. III, further discussion is given to the numerical re-
sults of a strongly nonlinear case and the symptom of the
breakdown of the weakly nonlinear model. Finally, our con-
clusion is summarized in Sec. IV.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A. Governing equations

The domain of interest under consideration is assumed to
be occupied by a dilute monovalent symmetrical electrolyte
(z*=—z"=1) with each ion’s bulk concentration cz (number
density). For further simplicity, we confine ourselves to a
two-dimensional problem in this paper. Extension to a three-
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FIG. 1. Two-dimensional space for numerical simulation of the
electro-osmotic flows around a pair of coplanar electrodes (indi-
cated by a horizontal bar A-B on the bottom wall); (a) physical
space to be treated by the Cartesian coordinates (x*,y*) with the
rectangular boundary O-C-D-E; (b) physical space to be treated by
curvilinear coordinates with the curved outer boundary G-H; (c)
transformed space defined by the coordinates (&, 77) constructed by
a conformal mapping. Notice the clustering of grids near the elec-
trode edge A in (b).

dimensional domain with multivalent asymmetric electrolyte
should be straightforward. Figure 1(a) illustrates, as an ex-
ample of the model problem treated in this study, the 2D
space above the bottom wall on which a pair of planar elec-
trodes are built. As usual, we assume completely polarized
electrodes so that no faradic current flows across the elec-
trode surfaces. We denote the Cartesian coordinate system
x*=(x*,y*) and the velocity vector u*=(u*,v*). In the fol-
lowing, the variables with “ *” as the superscript in general
represent the dimensional quantities and the ones without
“*” the dimensionless ones. However, for those parameters
denoted by widely used symbols for which we do not sepa-
rately need to define the corresponding dimensionless quan-
tities, we will use the bare symbols, without “ *)” as the
dimensional quantities.

The electro-osmotic flow of the incompressible fluid
around the pair of electrodes is governed by the following
equations:

V*.u*=0, (1a)
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Ju* ;
P == VP VT gV (1b)

where * is the time, p* is the pressure, ¢* is the electric
potential, p* is the fluid density, w is the fluid viscosity, and
V* is the gradient operator. Here the nonlinear convective
terms have been neglected as is usually true in microfluidics.
To solve the above equations, we need to impose boundary
conditions for the velocity components. At this time we must
apply the no-slip and impermeable boundary conditions all
over the surrounding boundaries including the electrode
walls. In Eq. (1b), pj is the charge density (charge per unit
volume) given by

P = (e = e, (2)

Here, ¢** denotes the concentration of the cation and anion,
respectively, and e=1.602X 1071 C is the electron charge.
The last term on the right-hand side (RHS) of Eq. (1b) is the
only body force that drives the viscous fluid flow. This force
vanishes in the bulk because it is neutralized, i.e., ¢**=~c¢*~
~ c: and p: =~ () there. Except for the strongly nonlinear case,
the middle layer is also neutralized. Within the inner layer,
however, non-neutralized distribution of the ions leads to a
nonzero value of pj.

Ton concentrations are determined from the Nernst-Planck
equation [1],

w

dc* =
or*

e

R PSS A

b

where D is the diffusivity of ions, k; is the Boltzmann con-
stant, and T is the temperature. Here again the nonlinear
convective terms have been neglected under plausible as-
sumptions. The first and second terms within the square
brackets on the RHS of Eq. (3) represent the diffusion effect
and the conduction (or ion migration) one, respectively. The
electric potential is intrigued by the presence of the charge
distribution and is calculated from the Poisson equation,

V- (eegV¥*) =—p.. 4)

Here, £,=8.85X 10712 C/V m is the dielectric permittivity
of the vacuum and ¢ is the relative permittivity of the fluid.
The boundary conditions for Eq. (4) are d¢*/dn*=0 on the
surface of the nonconducting walls, where n* represents the
dimensional local coordinate normal to the wall, and ¢*
== V:;O cos wt* on the left-hand side (LHS) and RHS elec-
trode surfaces, respectively. Here, V;)ko is the peak-to-peak
amplitude of the external ac potential applied on the elec-
trodes and w is its angular frequency. Since the convection
effect has been neglected, the system of equations that deter-
mine the electrochemical variables ¢*~, pj, and ¢*, i.e., Egs.
(2)—(4), are decoupled from the hydrodynamic equations,
namely Egs. (I1a) and (1b).

Associated with the solutions of Egs. (3) and (4), we have
two important length scales; see Suh and Kang [1]. The first
one is the Debye length defined as
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which represents the order of the inner-layer thickness. This
length comes from the balance between the diffusion and
conduction terms in Eq. (3) while neglecting the LHS term.
This means that the inner layer is characterized by a quasi-
steady state. Of course this quasisteady state can be feasible
only when the ac frequency is not so high; as a practical
guide, the frequency below 10 kHz will be enough for such a
state to be observable. In other words, if the external ac
period is much longer than the charging time, which is usu-
ally very short, we can expect the inner layer. The second
length scale comes from the balance between the LHS tran-
sient and diffusion terms in Eq. (3) reading

Ngig = \/g, (6)

which represents the thickness of the middle layer. The
middle layer is usually much thicker than the inner layer if w
is not so large and much thinner than the bulk scale if w is
not so small; indeed this is the case in various practical ap-
plications of ac electro-osmosis in microfluidics.

According to the analysis of Suh and Kang [1], cations
and anions in the inner layer respond to the external ac field
spontaneously but show alternately different accumulation of
ions during one ac period, 27/ w. Contrary to this, both ions
in the middle layer show the same behavior with each other
for the weakly nonlinear case. Therefore the nonzero poten-
tial drop occurs only across the inner layer, which is very
thin in terms of the bulk scale. So, from this fact together
with the fact that the hydrodynamic equations are decoupled
from the other ones, we are allowed to delete the last term in
Eq. (Ib) but instead change the boundary condition on the
electrode walls from the no-slip to the slip type with an ap-
propriate slip velocity. Calculation of this slip velocity al-
ways becomes the primary part of the whole numerical-
simulation procedure for electro-osmotic flows.

Calculation of the ac electro-osmotic flow field is per-
formed in general by two steps. In the first step, the unsteady
slip velocity at the outer edge of the electrical thin layers is
obtained from the interactive numerical simulation of the
Laplace equation for the potential in the bulk including the
middle layer and the dynamical equation for the surface
charge density on the interface between the Stern and inner
layers. Then the steady slip velocity is calculated from time
average of the unsteady velocity data over one ac period. In
the second step, the hydrodynamic equations (la) and (1b),
the last term being omitted in Eq. (1b), are solved by using
the steady slip velocity obtained in the first step as the
boundary condition specified on the electrode surfaces. In
this paper, we are interested mainly in the first step, because
the second step is not so much involved as the first one.

B. Slip velocity

The detailed derivation of the formula needed to obtain
the slip velocity has been given in Suh and Kang [1]. In this
paper, we just present important formulas. First we need to
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make the variables dimensionless as follows: x*=Lx, r*
=t/ w, c*i:czci, ¢*=¢r*ef¢, and pj:c:;epe, where L is the
reference length such as half the distance between the pair of
electrodes as shown in Fig. 1(a), ¢;kef=(L/)\d)2(D/L2w)§*/2
is the reference potential, and s*=k;,T/e is the thermal po-
tential. In this formulation we assume that D, e, and T re-
main constant.

The thickness of the Stern and inner layers is usually of O
(nm) being much smaller than the size of fluidic devices we
are interested in. So, we separate the domain into two parts;
the neutralized bulk and the middle layer (referred to as
“outer layer” hereafter) where the charge density is zero and
the thin region composed of the Stern and inner layers (re-
ferred to as “inner region” hereafter) where a substantial
amount of potential drop takes place due to the nonzero
charge density. The induced dimensionless potential, ¢(x,1),
in the outer region is governed by the Laplace equation,

Vip=0. (7)

This is valid when, first, the region is electrically neutralized
and, second, the concentrations are uniformly distributed;
see, e.g., [19,20] for the detailed discussion on this issue. In
the bulk region both requirements are satisfied as far as the
Debye length remains thin enough. We will see in this paper
that in the middle layer they are also approximately satisfied
for the weakly nonlinear cases but not for the strongly non-
linear cases. Since the inner region is very thin we neglect it
in defining the computational domain for solving Eq. (7).
The boundary condition at the surface of nonconducting
walls [i.e., O-A and B-C-D-E in Fig. 1(a) and O-A and
B-G-H in Fig. 1(c)] are set at d¢p/ dn=0, and along the sym-
metric line [i.e., O-E in Fig. 1(a) and O-H in Fig. 1(c)] we set
at ¢=0. In order to provide the boundary condition on the
electrode surface (more precisely at the outer edge of the
inner layer), we must consider the effect of the potential drop
across the Stern and inner layers.

The dimensionless potential at the edge of the inner layer
is determined from

d)w(s’t) = VOO Cos 1 — A¢S - A¢i’ (8)

where Adg(s,t) and A¢(s,t) indicate the potential drops
across the Stern and inner layers, respectively. Here, the co-
ordinate s denotes the dimensionless distance of a point on
the electrode surface measured from a particular point such
as the leading edge of the electrode for the coplanar case.
The asymptotic analysis of Suh and Kang [1] for the inner
region provided the following formula:

Ad)s == 82(q + (Ta)’ (93)

2
M,:_zln(m) (o5)
' Y \"16/7/+q2—q

In the above equations, ¢ is the dimensionless surface charge
density representing the effect of the charge accumulation in
the inner layer, and o, is the dimensionless surface charge
density caused by the ion adsorption at the interface between
the Stern and inner layers; detailed formula for ¢ and o, will
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be presented shortly. Parameters &, and 7y in Egs. (9a) and
(9b) are defined as follows:

Aseft

En=
I )
\/281L

1
y=¢. /5" = 5<L/xd)zs%,

where g; is a small parameter defined as
g, = VD/L*® = \gei/L,

and Ag., the effective thickness of the Stern layer, is related
to the actual Stern layer thickness \g as follows:

Nserr = Ns€/€s, (10)

where &g is the dielectric constant of the medium in the Stern
layer.

The surface charge density ¢(s,7) used in Egs. (9a) and
(9b) is determined from the dynamical equation [1]

= 11
ot 1+8 \dn/, (1

where the subscript “w” indicates that the corresponding
quantity should be evaluated at the electrode wall from the
solution of the Laplace equation for the outer region; the
subscript is also used in the analysis of the inner layer, i.e.,
Eq. (8), as the outer edge of the layer based on the fact that
the outer limit of the inner layer must be matched with the
inner limit of the outer region, the bulk. In the above equa-
tion, the variable B(s,7) denotes the effect of the ion adsorp-
tion:

—
8@V y(8 + 16+ Y4*)

= . (12)
V16 + Yq* (4 + 8a+ ayg?)

Here parameters I',,,, and « are made dimensionless from

the corresponding dimensional quantities F:;ax and «* as fol-
lows:

—
\ar*
max

* %
= , a=c, a*. (13)
max T‘O )\dif 0
We note that the formula (12) has been derived based on the
Langmuir-type isotherm [1]

+

+ 1_‘maxafci

- l+alct+¢)’ (14)

On the other hand, the surface charge density o,(s,7) in Eq.
(9a) representing the ion adsorption at the interface is to be
calculated from

 Thuayg\16/y+ ¢* 15)

“ 4+ 8a+ ayg

As introduced in Suh and Kang [1], F:m represents the
maximum limit of the permissible number of ions per unit
area adsorbed at the electrode surface. We can roughly esti-
mate this magnitude by the formula, F;aX~ 1/A%*, where A*
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TABLE 1. Two types of KCI solution used in the present numerical study.

Type k (S/m) c; (mole/1) c; (m™3) D (m?/s) Ny (nm)
A 0.0021 0.141x 1073 0.850 X 103 1.92x 107 254
B 0.0086 0.583x 1073 3.51x10% 1.90x 107° 12.5
denotes the minimum area available for allowing one ion to «_ (&80 ¢
be adsorbed on the surface. Suppose that every adsorbed ion u, = ul ¢ref ¢1 : (18)

is spread on the electrode surface in a hexagonal shape, then
we can compute A* from

A* =2\3a"2, (16)

where 2a* is the side length of the hexagon. Further, we
assume that a* corresponds to the ionic radius, which can be
obtained from the formula of the mobility,

F

P (17
6ma* uN,

where N,=6.02X 10> is the Avogadro number. Using the
numerical values m=7.6X 10" and 7.9 X 1078 m> Q/V for
the K* and CI™ ions, respectively, we can derive a*=0.112
and 0.108 nm for each ion. Assuming again that both ions
have the same ionic radius, a*=0.11 nm, we arrive at F:m
~2.39x 10" m~2. But this should be considered only as a
reference value. There must be several factors to be ad-
dressed before presenting a physically plausible value of
F:}ax. First, the mobility formula (17) is derived under a
dilute-solution condition, and for the case of high concentra-
tions it must be modified. Second, but more importantly, the
minimum area one ion can take with highest population, i.e.,
A*, may be more involved than the simple form like (16).
Third, the affinity between the electrode and the electrolyte
may also affect the value of A*.

The physical meaning of the parameter «* can be under-
stood from the formula (14). It shows that when either ¢* or
¢~ approaches infinity, the magnitude of I'* or I'" becomes
saturated to I'y,,. For instance, I'* reaches approximately
90% of T, at ¢*=9a7!; in the dimensional quantities, we
may say that the interface is saturated with 90% coverage of
the adsorbed cations when the cation concentration at the
interface reaches ¢**=9/a*. Therefore a* should plausibly
take the numerical value in the order of 1/c.. As a typical
example, for the electrolyte type A of KCI shown in Table I,
we have 1/c;=1.2X 10 m>. In this paper we will tune the
two parameters r* . and @ (or sometimes their dimension-
less quantities) and see in what extent they can reproduce the
experimental data.

The dimensional “instantaneous” slip velocity u;k(s,t) at
the outer edge of the inner layer (or at the electrode wall
viewed from the outer region) caused both by the potential
drop across the inner layer and by the tangential gradient of
the potential is given by

In deriving this formula the adsorbed ions are assumed to be
immobile and thus do not contribute to the slip velocity. The
steady-state slip velocity u (s) is then obtalned from the
time average of the 1nstantaneous quantity; u 51 —(u ).

Determining distribution of the slip Velocrty u1 on the
electrode surface is the primary goal of the numerical simu-
lation before going to the Navier-Stokes equation for estab-
lishing the flow field over the domain. As can be seen from
Eq. (18), we need to find both the tangential component of
the electric field, d¢,,/ds, and the potential drop across the
inner layer, A¢,. These are ultimately provided from the so-
lution of the Laplace equation (7).

C. Numerical method and procedure

It is now clear that we must solve the Laplace equation
(7) for ¢ in coupling with the dynamic equation (11) for ¢. In
more details, in solving Eq. (7) we need ¢,, as the boundary
condition on the electrode wall and this is determined from g
as shown in Egs. (8), (9a), (9b), and (15). On the other hand,
in solving Eq. (11) for ¢ we need the potential gradient
(d¢p/ dn),, and this is determined from the solution of Eq. (7).
We employed the finite volume method in solving Eq. (7) by
using two different types of grid systems. In solving Eq. (11),
a different algorithm has been used depending on the grid
system used for the discretization.

The first grid system is made based on the Cartesian co-
ordinates (x,y), and in this case the computational domain is
just a rectangle in the physical space, i.e., O-C-D-E in Fig.
1(a). With the uniform grids, Eq. (7) is disctretized by using
the central difference formula. The resultant algebraic equa-
tions are solved by using the SOR (successive over relax-
ation) method. From the solution obtained in this way, the
potential gradient (d¢/dn),, is computed at each grid point
on the electrode surface, which is then used in updating g
from Eq. (11) as follows:

o) "E 9 k-1
qkzqk-um[\—sly(—‘/’) } , (19)
1+8 \on/,

where the superscript “k” denotes the time level. The up-
dated ¢ is then applied to Egs. (15), (9b), and (9a) to ulti-
mately compute ¢, from Eq. (8). This quantity is again used
as the boundary condition on the electrode wall in solving
Eq. (7) for ¢*, and this completes one cycle of the computa-
tion for the time level k. Since the value of ¢, needed in
solving Eq. (7) and that of (d¢/dn),, needed in solving Eq.
(11) are provided explicitly, this method is called the “ex-
plicit method.”
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FIG. 2. Computational cell just above the electrode wall and
definition points for the three discrete potentials.

Since a high gradient in the potential function is expected
near the edges of the electrodes, we need to design clustered
grids there for more accurate numerical results. Therefore, to
produce the second grid type, we introduce new coordinates
(¢, ) transformed from the Cartesian coordinates with the
following conformal mapping:

x=cosh(mw&/2)cos(mn/2), y=sinh(7&/2)sin(7n/2).

In the (&, 7) space, the computational domain is a rectangle
as shown in Fig. 1(c) and the outer boundary G-H [dashed
line in Fig. 1(c)] maps to a quarter of ellipse in the (x,y)
space [dashed line G-H Fig. 1(b)]. We notice the clustering
of grids near the leading edge of the electrode as shown in
Fig. 1(b). In general, the effect of the detailed geometry of
the outer boundaries can be considered to be insignificant as
far as they are apart enough from the electrodes, or in more
specific terms, when the reference length L remains small
compared with the domain size; so, use of the transformed
coordinates in the simulation is plausible or even more pref-
erable than the Cartesian coordinates. However, in this grid
system, the time step must be taken small because of the
numerical instability caused by small grid size near the elec-
trode edge with the explicit method.

To overcome such numerical instability in computation
with the transformed grids, we applied an implicit method.
First, we take time derivative to Eq. (8),

b, Y

—Vypsint, 20
py (977) 00 (20)

w

=H(q )(

where H(q) reads

= an 2
H(g) =2V2ve (—) |:8 + , :|
1 N LT s piey e 4

Next, we apply the Euler implicit algorithm to Eq. (20) to get

kK k-1
bu= b Af’w :Hk—1<¢2A ¢‘> — Vgosint, (21)
7

where H*"'=H(4*"), and ¢, and ¢, denote the discrete vari-
ables defined at the center of the interior cell just above the
electrode wall and at the center of the exterior cell just below
the wall (see Fig. 2), respectively. We then replace ¢,, on the
LHS of Eq. (21) with ¢, and ¢, by using the relation ¢,
=(¢p1+¢,)/2 to arrive at the formula relating ¢' and ¢ as
follows:
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‘0 (— 1+ 2Hk‘1At/A77> ‘., ( S+ BT = 2A1Vy sin t)
"\ 1428 ArAy 1+2H'At/Ay

Substitute this into the discretized equation of Eq. (7) for the
cell just above the electrode wall, having ¢>’§ as the centered
variable, and remove d)’f to obtain the final form of the alge-
braic equation for the cell, which is then subjected to the
solver SOR. In this algorithm, we further need to know ¢ for
given ¢,, in evaluation of H(g). For this, we solved the non-
linear equation (8) for ¢ by using the Newton-Rhapson
method. It was found that a few iterations are enough to
obtain the converged value with reasonable accuracy in most
cases. We confirmed from sample simulations that the im-
plicit algorithm with the transformed coordinates indeed en-
hanced the numerical stability significantly.

II1. NUMERICAL RESULTS
A. Review of parameters and validation of the code

Before presenting the numerical results, we must review
the various parameters involved in this study. We employed,
as the electrolyte, two kinds of the KCI solution, i.e., types A
and B, used by Green et al. [13]. They presented the conduc-
tivity « instead of the concentrations for each of the electro-
lytes. Table I shows the detailed properties of each type de-
rived in this study. In the table the number concentrations Co
in m™ are computed from c = IOOON Ac . For a given « in
S/m, the molar concentratlon cM in mole/l is obtained by

solving the following empirical formula:

149.9¢,, - 94.7(c; )" +91(c,)* = 10k,

which has been derived from the data of conductivity pre-
sented in the literature. On the other hand, the diffusivity of
each solution is calculated by using the formula

_ k/,TK

=5
2660

Following the experimental setup of Green er al. [13], we set
the gap between the electrode pair at 2L=25 um. The tem-
perature is set at 7=288 K, the viscosity at wu
=0.001 Ns/m?, and the relative permittivity of the fluid at
£=80. Other parameters varied in this study are the number
of grids I X J or the dimensionless spatial grid size Ax and
Ay, the dimensionless time step At, the ac frequency f, the
amplitude of the external ac potential V;O, and the effective
Stern-layer thickness Ag.;. We also investigated the effect of
the domain size by changing x,,, the x coordinate of point C
in Fig. 1(a) for the Cartesian coordinate system and that of
the point G in Fig. 1(b) for the transformed system, and y,),
the y coordinate of the point E for the Cartesian coordinate
system. The effect of the electrode length is also studied by
changing x,,,, i.e., the coordinate of the point B in Figs. 1(a)
and 1(b); the actual electrode length L, is related to x,,, by
L,=L(x,,—1).

In the following we present the numerical results mostly
in terms of “:11;) the dimensional slip velocity with the physi-
cal unit um/s. On the other hand, since the experimental
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data reported in Green et al. [13] were measured at four
discrete points on the electrode, say at s*=5, 10, 15, and
20 pum from the leading edge, we must define u:, ”To’ etc.,
representing the dimensional slip velocity at each of their
measurement points discriminated by the subscript.

We validated our code by comparing the slip velocities
obtained with different grid resolutions. For x,,=x,,=41,
V5y=025V, Ngg=10nm, I =5X10""m™, «a*=3.16
X 1072* m?, and f=100 Hz, we conducted the simulation by
using the code for the transformed grids with the number of
time steps per one period set at N=2000; we call this param-
eter set, except for the frequency, as ‘“standard.” The slip
velocities u;k, ”To’ etc., obtained with the grids /X J=41
X 21 were found to keep the same three digits as the corre-
sponding ones obtained with a higher resolution /X J=81
X41. At f=1000, difference between the results with 7XJ
=41X21 and those with /X J=81X41 is found to be within
1.1%. Therefore in this study we conducted numerical simu-
lations by using the code of transformed grids with IXJ
=81 X 41. Further, our two types of codes are also validated
by comparing the results with each other. Of course, the
shape of the domain in the two codes differs from each other
as explicitly shown in Figs. 1(a) and 1(b). So, direct com-
parison should have a limited consequence. For x,,=x,,
=11 and all the other parameters set at the standard values,
the code with Cartesian grids /X J=81X81 at f=100 Hz
underestimates the slip velocity with 2.6% error. This error is
decreased down to 1.4% for the grids I XJ=321X321. At
f=1000 Hz, the error is about 6.5% for IXJ=81X 81 and
0.3% for I X J=321X321. Such amount of errors is assumed
to be not problematic in the present study. From this com-
parison, we can assure that the developed codes are reliable
and they should provide solutions accurate enough with a
suitable choice of grids. All the numerical results presented
in the following sections have been obtained by using the
code of transformed grids with the standard parameter set
otherwise specified.

B. Typical numerical results, fundamental mechanism,
and the frequency effect

Figure 3 shows typical distributions of the dimensional
slip velocity u:ip obtained numerically at three frequencies.
It is now well known from numerical as well as experimental
studies on the effect of the frequency that there is a critical
frequency f, at which u:i becomes maximized. Thus we
selected f=2000, 250, and 40 Hz as the representative of the
supercritical, critical, and subcritical cases, respectively. We
can see from Fig. 3 that in a broad range of x, the critical
case gives the largest u_ Ji,- The supercritical case shows con-
finement of the slip VC]OClty to the leading edge, x=1, and a
sharp decrease of us]ip with x. The subcritical case shows
distribution of “;knp in a lower but flatter level than the other
cases.

In the remainder of this section, we will address the fun-
damental mechanism of the slip velocity in terms of the ef-
fect of the frequency. Figure 4 shows typical distributions of
the potential ¢(x,y,?) in a time sequence during one ac pe-
riod obtained at a supercritical frequency, f=2000 Hz. The
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FIG. 3. Distribution of the dimensional slip velocity u”. on the
electrode surface obtained numerically by using the trans%ormed-
grid code for the electrolyte A at three frequencies, f=2000 Hz
(dash-dot-dot lines and square symbols), 40 Hz (dash-dot), and
250 Hz (solid lines and delta symbols). The other parameters follow
the standard set except for x,,=y,=11 applied here. Symbols
(squares for f=2000 Hz and deltas for =250 Hz) are inserted in
the zoom-in plot to indicate the clustering of grids near the elec-
trode edge, x=1.

pattern is almost the same as the one that would be obtained
without any potential drop across the Stern or inner layer;
that is, the potential tends to be uniform over the electrode
surface. Exceptionally, very near to the leading edge of the
electrode, we expect a significant amount of disturbed poten-
tial contributed by alternating accumulation of ions and the
subsequent charging in the inner layer, as is visualized dis-
tinctively at two instants, t=27/8 and 67/8, in Fig. 4. Such
localization of the charging and the slip velocity is more
manifest at high frequencies. Figure 5 shows the time se-
quence of the ¢ field during one period obtained at a sub-
critical frequency, f=100 Hz. We can see that, compared
with the supercritical case of Fig. 4, the surface potential
with lower f reveals nonuniform distributions over the whole
electrode surface. This then implies that spatial distribution
of the slip velocity must be flatter at lower frequencies, as
demonstrated in Fig. 3.

Figure 6 is prepared to illustrate the influence of the ac
frequency f on the potential drop across the Stern layer A ¢y
and that across the inner layer A¢; and on the tangential
gradient of the potential at the wall d¢,,/ds in order to un-
derstand the variation of the slip velocity us*li upon change of
/. As can be seen from Eq. (18), two important magnitudes
that determine the instantaneous slip ve1001ty u are A¢; and
de,,/ ds. Since the final steady slip velocity u 1s given from
the time average of the instantaneous quantlty, not only their
magnitude but also their phase difference plays an important
role in determining u:ip. For a supercritical f, the electrode
potential changes its sign so frequently that ions do not have
enough time to accumulate on the electrode surface. Thus
A¢; remains at a low level as shown in Fig. 6(a). In the
region far away from the leading edge the uniformity in the
distribution of potentials is expected and therefore d¢,,/ds
should also remain small; near the electrode edge, however,
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FIG. 4. Time evolution, during one ac period, of the spatial
distribution of the potential field ¢(x,y,?) obtained numerically at
f=2000 Hz. All the other parameters are set at the same values as in
Fig. 3. The increment of the potential in this contour plot is
A¢=0.0002. The solid and the dashed lines denote the positive and
negative contour levels, respectively; note that ¢=0 along the
boundary x=0.

the potential drop occurs with a steep gradient which may
give rise to a not-so-small value of d¢,,/ds as shown in Fig.
6(a). Conclusively, we can say that at high frequencies a low
level of A¢; overall results in a small slip velocity, as was
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FIG. 5. Time evolution of ¢(x,y,?) obtained numerically at
f=100 Hz with all the other parameters set at the same values as in
Fig. 3. The increment of the potential in this contour plot is
A¢=0.004.

shown in Fig. 3. On the other hand, for a subcritical f, ions
have enough time to accumulate on the electrode surface
thereby showing the tendency to screen the electrode surface.
Thus, we can find in this case a region near the leading edge
of the electrode where the potential remains uniform with the
magnitude close to zero, resulting in a small value of d¢,,/ds
there as shown in Fig. 6(c). Further, the phase difference
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FIG. 6. Development of the external potential V(¢) (dashed
lines), the potential drop across the Stern layer Ay (dash-dot), that
across the inner layer A¢; (dash-dot-dot), and the tangential gradi-
ent d¢,,/ds (solid) at a point, x=1.421, obtained numerically with
the same parameter set as in Fig. 3 except for (a) f=2000 Hz (su-
percritical), (b) =250 Hz (critical), and (c) f=40 Hz (subcritical)
applied here; all four quantities are normalized by the amplitude of
the external potential V.

between A¢; and dep,,/Js is close to T/4, as also shown in
Fig. 6(c). Conclusively with this case, A¢; is large but
do,,/ds is small and the phase difference is close to 7/4,
which should again lead to a small slip velocity, as was
shown in Fig. 3. Figure 6(b) corresponds to the case in be-
tween the two extreme situations, and it was shown in Fig. 3
that this critical case indeed gives the highest slip velocity.

Although Fig. 6 helps to comparatively understand the
temporal change of A¢;, A¢g, and Jdep,,/ds at one point,
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FIG. 7. Spatiotemporal distribution of A,/ Vyy at three frequen-
cies; (a) f=2000Hz with the contour increment 0.01;
(b) =250 Hz with the contour increment 0.02; (¢) f=40 Hz with
the contour increment 0.04. Here the contour lines with A¢; <0 is
shown as dashed lines. All the other parameters are set at same
values as in Fig. 3.

x=1.421, it cannot provide a global view of the spatiotem-
poral variation of them. Figure 7 demonstrates the dramatic
difference in the spatiotemporal distribution of A¢; with f. It
was found that the distribution of A ¢y is very similar to Ag;
except that the former is several times higher than the latter.
At the supercritical state, Fig. 7(a), A¢; is maintained at a
low level, and its variation is confined to the region close to
the leading edge. Very close to the leading edge, it is shown
that A¢; asymptotically has the same time phase as the ex-
ternal potential Vj; it seems that a very high electric field
d¢p/dn near the edge makes the charging occur in a very
short time scale. Far from the edge, A¢; tends to lag the
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external potential with the phase difference 7/4; this is con-
sistent with the linear response of the Debye layer under a
small external potential, as shown by Suh and Kang [1]. This
implies that at high frequencies, the region far from the lead-
ing edge reveals a linear behavior. On the other hand, at the
subcritical state, Fig. 7(c), the level of A¢; is much higher
than the supercritical case, but it tends to be uniform over the
whole electrode surface; this implies that at the subcritical
frequency a saturated charging has been reached. Therefore
the gradient d¢,,/ds tends to be decreased in this regime as
was shown in Fig. 6(c). On the other hand, at the critical
frequency, Fig. 7(b), the level of A¢; not only remains at
high values but also decreases smoothly as x is increased.
The phase of A¢; also changes gradually from almost zero at
the leading edge to approximately 7/4 at the other end.

From the numerical results shown in Fig. 7, we can do
some analysis to derive a simple formula that would predict
the slip velocity qualitatively. First we note that A ¢g and A ¢,
show similar patterns in both temporal and spatial distribu-
tions as can be seen from Fig. 6; we have also confirmed this
from the comparison between Fig. 7 and the corresponding
contour plots of Agg. So, we can write approximately as
follows:

Aps=CAg;, (22)

where the numerical constant C is typically C=2-4 depend-
ing on f for the above numerical results. Then from Eq. (8)
the gradient d¢,,/ds can be obtained by using

do,, AYOS
9 __ (1402
Js as

Substitute this into Eq. (18) to derive

. 1+C<880 *2>a(A¢>,~)2
U =——| — - .

= 23
s 2 ML ref Js ( )

Further, from observing the numerical results we assume the
following form as the simplest approximation for the local
spatiotemporal behavior of Ag;:

A ;= B exp(— ks)cos(r — ms + i),

where the local coordinate s has its origin at an arbitrary
point on the electrode surface and B denotes the amplitude of
A¢; there. The constants k and m control the spatial rate of
amplitude decay and phase change of Ag;, respectively, and
the constant ¢ represents a local phase. Then we have

2
<— M> = kB? exp(— 2ks).
as

This indicates that the magnitude of the slip velocity is pro-
portional to the spatial decay rate k and the square of the
local amplitude of A¢;, i.e., B. By using this simple fact, we
can explain the fundamental cause of the results of Fig. 3
very easily from Fig. 7. For the supercritical case, Fig. 7(a),
both k and B are at a low level over the whole electrode
surface but increases sharply as the leading edge is ap-
proached. Therefore u:i is large in this narrow region and
remains small all over the other part of the electrode as
shown by the corresponding line in Fig. 3. For the subcritical
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case, Fig. 7(c), B is large but k is small; in fact, as f is
decreased there should be a limit in the increase of B (obvi-
ously the limit value is at most V|, occurring when the elec-
trode is completely screened by the charging) but no limit in
the decrease of k. Further, we observe from Fig. 7(c) that B is
almost uniform over the whole range of x but k slowly de-
creases to reach zero at the end point x=x,,. This analysis
should be enough to understand the slow decrease of the slip
velocity being maintained at a low level for the supercritical
frequency in Fig. 3. Finally, for the case of the critical fre-
quency, Fig. 7(b), B is smaller but k is significantly larger
than the supercritical regime, which eventually leads to the
highest slip velocity in a wide region as shown in Fig. 3.

C. Effect of the electrode length and the domain size

In this subsection, we address the effect of the size of the
electrode and the domain on the numerical results. First, we
studied on the effect of the electrode length on the slip ve-
locity. While keeping the domain size at x,,=32, we changed
the electrode length by adjusting the coordinate of the elec-
trode’s trailing edge x,,,. Shown in Fig. 8(a) is distributions
of “:up along the electrode surface obtained for two elec-
trodes, x,,=5 and 10, and two frequencies, f=100 and
1000 Hz. At the low frequency, f=100 Hz, the fluid slip oc-
curs in a broad range of the electrode surface, whereas at the
high frequency, f=1000 Hz, it tends to be confined to the
region close to the leading edge, which is in line with the
discussions given in the previous subsection. Because of this,
the electrode size exerts almost no effect at high frequencies
but significant effect at low frequencies on the slip velocity.
In the latter case, a shorter electrode produces a lower level
of ufh . Figure 8(b) shows the slip velocities u: and ”‘To ob-
tained by fixing the domain size at x,,=32 while changing
the electrode length from x,,,=3 to 32 at two frequencies. It
again indicates that the effect of the electrode size is more
pronounced at lower frequencies. The reason for a lower
level of u:“p with a shorter electrode at subcritical frequen-
cies can be understood from the spatiotemporal distributions
of Ag;/Vy, shown in Fig. 9. This figure indicates that the
magnitude of A¢;/V,, obtained with a shorter electrode,
X.n=5 [Fig. 9(a)], is somewhat larger than that with the
longer electrode [Fig. 9(b)], but its spatial variation for the
shorter one is weaker than that for the longer one. This
means that a longer electrode provides a smaller B but a
larger k, which resultantly gives a larger slip velocity as
shown in Fig. 8. The fact that the magnitude of A ¢; remains
almost uniform over the whole electrode surface for a shorter
electrode can be further understood from the distribution of
—(d¢/ dn),,, the normal component of the electric field at the
electrode surface, which is presented in Fig. 10. This figure
shows that —(d¢p/ dn),, is higher for shorter electrodes. On the
other hand, we can observe that the spatial gradient of
—(d¢/ dn),, along the coordinate x is lower for shorter elec-
trodes. It is clear from the physical intuition or from Eqgs.
(9b) and (11) that the potential drop A¢; is proportional to
the magnitude of —(d¢/dn),,. So, we can expect a higher
level but smaller spatial gradient of A, for shorter elec-
trodes. In this case, the consequence of the decrease of the
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FIG. 8. Effect of the electrode size on the slip velocity u:kh with
the domain size fixed at x,,=32; (a) distributions of u:i along the
electrode with x,,,=5 (upper lines) and 10 (lower linesl)J at f=100
(solid lines) and 1000 Hz (dash-dot lines); (b) magnitude of u;k
(squares) and ”To (deltas) as functions of x,,, at f=100 Hz (filled)
and f=1000 Hz (empty). All the other parameters are set at the
same values as in Fig. 3.

spatial gradient seems to dominate over that of the increase
of the magnitude itself, which is the fundamental reason for
the decrease of the slip velocity for shorter electrodes.

Next we studied on the effect of the domain size. While
keeping the electrode’s end position at x,,=9, we changed
the domain size from x,,=9 to 32. The variation of the slip
velocities u: and “To is plotted in Fig. 11. At the high fre-
quency f=1000 Hz, the slip velocities do not show any sig-
nificant variation. At the low frequency f=200 Hz, however,
they are increased for smaller domain size. This also indi-
cates that the domain size affects the slip velocity only at low
frequencies.

D. Effect of the Stern-layer thickness

In this subsection we study the effect of the effective
thickness of the Stern layer Ag.s on the slip velocity. In this
simulation, we set x,,=x,,=41 following the experimental
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FIG. 9. Comparison of the spatiotemporal distributions of
A¢;/ Vi, obtained at f=100 Hz for two electrode lengths; (a) x,,,
=5; (b) x,,,=10. The domain size is fixed at x,,=32. The contour
increment for both plots is 0.04. In (b), the range of x for the plot
was set as the same as (a) for direct comparison between the two.

setup of Green er al. [13]. Figure 12 illustrates the numerical
results given with no adsorption effect for various values of
Nsetr- It shows that as Ag. increases the slip velocity u;k is
decreased substantially in the subcritical regime while it is
slightly increased in the supercritical regime, which overall
leads to the increase of f,.. The numerical result with Ag.
=60 nm produces the peak value of u. in almost the same
level as that measured by Green et al. [13], but the numerical
f. is almost ten times larger than the experimental one.
Therefore we can see that for any choice of Ag. the experi-
mental data cannot be reproduced with a suitable level of
accuracy for the case without the adsorption effect.

The reason for the decrease of the slip velocity with A
in the subcritical regime can be explained with the aid of the
spatiotemporal distributions of A¢; and A¢g, as shown in
Fig. 13. First note that, if we were to use Eq. (23) in this
analysis, the parameter C is no longer constant; it is zero for
Nseri=0 but close to 1 for Ag.=10 nm. Therefore we had

0.03
0.025 F

0.02
0.015

0.01

FIG. 10. Distributions of —(d¢/dn),,, the normal component of
the electric field at the electrode surface, obtained with f=100 Hz
for three electrode lengths at the very beginning of the simulation
t=0 when no charging occurs. All the other parameters are set at the
same values as in Fig. 3.
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FIG. 11. Effect of the domain size x,, on the slip velocity u
(squares) and ”To (deltas) obtained at f=100 Hz (filled) and
f=1000 Hz (empty). Here the electrode length is fixed at x,,=9.
All the other parameters are set at the same values as in Fig. 3.

better use the original form (18) rather than Eq. (23) in
studying the effect of the Stern layer. By comparing Figs.
13(a) and 13(b) we can detect the decrease of A, due to the
Stern-layer effect. On the other hand, the magnitude of Ay
is comparable to that of A¢; as shown in Fig. 13(c). Al-
though each of the two potential drops for Ag.g=10 nm may
be smaller than A¢; for Ng.4=0, the total potential drop is
found to be larger for Ag.=10 nm. This then implies [see
Eq. (8)] that ¢, should be decreased due to the Stern-layer
effect. From these and other results we can state that, for
subcritical frequencies, the presence of the Stern layer causes
a decrease of both A¢; and ¢,, causing the slip velocity to
decrease, following Eq. (18).

Sketches of Fig. 14 are prepared to compare the dramatic
difference in the potential distribution for three cases. Con-
sider a point on the electrode wall and an instant when the
external potential is V;(z) and the potential at the outer edge
of the inner layer is ¢,,. A typical distribution of the potential

10 £ [Hz] 10° 10*

FIG. 12. Influence of Ag., the effective Stern-layer thickness,
on the slip velocity u;k in the frequlency domain. Here no adsorption
effect was assumed, i.e., we set I' ;M:a*:o. The domain size and
the electrode length are set at x,,=x,,,=41. The experimental data
given by Green et al. [13] are denoted by symbols.
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FIG. 13. Spatiotemporal distributions of normalized potential
drops obtained without adsorption effect at =100 Hz; (a) A¢;/Vy
for Ag.g;=0 (without Stern layer), (b) A,/ Vi for Agegr=10 nm, and
(¢) Agpg/ Vi for Ngeer=10 nm. The contour increment is 0.1.

within the inner layer for the case without the Stern layer
may look like Fig. 14(a) and the potential drop across the
inner layer should read A¢;=V,— ¢,,. Then we insert a Stern
layer at the interface between the electrode and the inner
layer, like Fig. 14(b), within which the potential shows a
linear distribution (no charging); here the thickness of the
inserted Stern layer is supposed to be the effective thickness,
not the actual thickness, the dimensional quantity being Ag.gr
[refer to Eq. (10) for the relation between the two thick-
nesses]. We also assume momentarily that ¢,, is the same as
in Fig. 14(a) and the amount of charging is unchanged too.
Then A¢; must be reduced because now Ag;=V,—ao,
—Ags. Of course ¢, itself should be modified when the
Stern-layer effect is considered, but its effect can be assumed
to be secondary. Figure 14(c) will be discussed in the next
section when the effect of the adsorption is addressed.

E. Effect of the adsorption and comparison
with experimental data

It was shown numerically in the previous section that any
choice of the Stern-layer thickness cannot reproduce the ex-
perimental data. In this section we will see that a suitable
choice of the adsorption parameters can give rise to fairly
good agreement between the two results. Presented in Fig. 15
is the slip velocity u: obtained numerically for the various
values of I'"  at a*=3.16 X 10" m? in Fig. 15(a) and for
the various values of a* at F:MX=5 X 10'® m~2 in Fig. 15(b).
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FIG. 14. Sketches illustrating the potential distribution (solid
lines) and its drop near the electrode (hatched) surface (a) without
the Stern-layer or adsorption model, (b) only with the Stern-layer
model, and (c) with both the Stern-layer and adsorption models. In
these plots the horizontal dashed line denotes the asymptotic value
of the potential at the outer edge of the inner layer, i.e., ¢,. The
dash-dot line in (b) corresponds to the solid line of (a) and the
dash-dot line of (c) to the solid line of (b).

We see from Fig. 15(a) that an increase of F;ax results in a
decrease of the slip velocity, as expected. With I‘fnaX:S
X 10'® m~2, the numerical results show good agreement with
the experimental results. An increase of F:m also causes a
decrease of the critical frequency. The effect of a* on the slip
velocity with fixed F::ax is similar to that of F;ax with fixed
a*, as can be seen from Fig. 15(b). In this case, however, the
slip velocity is saturated at o* larger than the value o*
=3.16 X 1072* m~3. Further discussion on such saturation of
the slip velocity will be given later in this section.
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FIG. 15. Effect of the adsorption parameters on the slip velocity
u;:: (a) effect of F:lax at a*=3.16 X 10723 m?3; (b) effect of a* at
r I RRS 10'® m~2. The experimental data given by Green et al.

[lné] are denoted by symbols.

The reason for the decrease of the slip velocity with in-
troduction of the ion adsorption can be explained as follows.
First we note that (counter)ions are adsorbed at the interface
between the Stern and inner layers causing an increase of the
surface charge there. Integration of the Poisson equation (4)
across the very thin layer on the interface, where ions are
adsorbed, then tells us that there is a jump in the potential
gradient on both sides of the interface as shown in Fig. 14(c);
this jump is proportional to the amount of adsorption. There-
fore the potential drop across the inner layer must be de-
creased, which finally makes the slip velocity decreased.

Figure 16 shows the slip velocities obtained by the nu-
merical simulation for the electrolytes A and B with the ad-
sorption parameter values chosen to give the best fit with the
experimental data of Green et al. [13]. Both the slip-velocity
magnitude and the critical frequency of the measurement are
well reproduced by the numerical simulation. It is also re-
markable to note that both fittings have been established with
the same values of F:;ax and o*.

The optimum parameter set used for the data of Fig. 16
was in fact obtained from the parametric study on the rms
error sfms of the slip velocity. Here the szns is defined as the
root-mean-square of the numerical slip velocities referring to
the experimental data u::l (m=5,10,15,20) of Green et al.
[13]. In order to find the parameter set for the best agreement
between the numerical and experimental slip velocities, we
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FIG. 16. Comparison of the slip velocities u”. obtained by the

sli
present numerical method at the standard parameter set (solid lines)

with those of the experimental measurement reported by Green et
al. [13] (symbols linked by dashed lines) for (a) electrolyte A and
(b) B.

first set the parameter a* at a certain value. While changing
the parameter re e WE find the critical value of I‘>k o At
which e becomes minimum. We repeat this process for the
other Values of a*. Figure 17 shows the locus of (I'* ax,a*)
obtained in this way for the electrolytes A and B at three
different values of Ag. . We recognize two distinctive re-
gimes from this plot. The first one corresponds to the param-
eter space o> 1072} m? approximately in which the locus is
almost vertical. In this regime the best parameter set is de-
termined solely by T:MX and variation of a* exerts almost no
influence on the error. This can be understood from the for-
mula for the parameter B representing the adsorption effect,
i.e., Eq. (12). In the first regime, « is large enough that Eq.
(12) can be approximated like B=8I,,./¢q under the as-
sumption {(yg’)>a>1. In the second regime, a*
<107 m’, the locus can be simply written as a*I""
= const. This can also be understood from the approximation
of Eq. (12) under the assumption a<<1 and (yg®)<1. The
figure also reveals that as the Stern-layer thickness increases,
the value Fma must be decreased with the value of «* being
fixed for the best fit to the experimental data. On the other
hand, higher concentrations turn out to require lower I‘max
and/or lower a*.
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FIG. 17. Locus of the parameter set (F ,a*) at which the rms
error of the shp velocity becomes locally minimum when T e 1S
varied while a* is fixed with three values of Ag.. The solid and
dash-dot lines are for electrolytes A and B, respectively.

So far we have seen that the adsorption phenomenon can
give rise to good agreement in the slip velocity between the
numerical calculation and the experimental measurement.
Considering that all the previous numerical simulations or
theoretical analyses overpredict the measured results by one
or two order of magnitude, good agreement between those
data as shown in Fig. 16 is very encouraging. Regarding the
still-existing discrepancy between the two results, we need to
address one point of view. Green et al. [13] mentioned that
while doing experimental measurement of the ac electro-
osmotic flows, particles were sticking on the electrode sur-
faces. Obviously, the effective size of the electrodes should
have been decreased in that case. Unfortunately, no informa-
tion has been reported as to the extent and range of the cov-
ered portion of the electrodes. Further, the fact that shorter
electrodes cause the slip velocity lower at subcritical fre-
quencies, as addressed in the previous subsection, does not
seem to enhance the matching between the two data.

F. Further discussions

The numerical results presented so far have been obtained
at the parameter sets corresponding to weakly nonlinear re-
gimes. In this subsection we will investigate the numerical
results of a strongly nonlinear case and understand how the
weakly nonlinear model breaks down for such cases. Figure
18(a) exhibits the temporal change of the wall potential ¢,,
obtained from the interactive 2D calculation in comparison
with that obtained from the 1D PNP (Poisson-Nernst-Planck)
numerics for a weakly nonlinear case without an adsorption
effect. Here, the 1D PNP calculation employs the 1D version
of the Nernst-Planck equations (3) for the concentration dy-
namics and the 1D version of the Poisson equation (4) for the
potential; a detailed description of the numerical method has
been given in [1]. The time history of the potential gradient
at the electrode wall, (d¢/ dy),,, obtained from the interactive
2D calculation (dashed line in the figure) serves as one of the
boundary conditions at the outer edge of the domain in the
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FIG. 18. Comparison between ¢,,(r) obtained at x=1.414 from
the interactive 2D calculation (solid) and that obtained from the full
ID calculation (dash-dot) with the potential gradient at the edge of
the domain being provided by the 2D calculation (dashed) for (a) a
weakly nonlinear case with V:0=0.25 V and (b) a strongly nonlin-
ear case with V;():Z V. The other parameter values are the same as
the standard set except for the following: f=500 Hz and F;ax= a*
=0 (no adsorption).

1D calculation and the asymptotic potential ¢,, (see Fig. 14),
to be compared with that obtained from the interactive 2D
calculation, is given by extrapolating the linear distribution
of the potential in the bulk and middle layer and evaluating
at the wall y=0. It clearly reveals exact agreement between
the two results for the weakly nonlinear case. The nonlinear-
ity of the physics becomes more prevalent at the point closer
to the leading edge and at lower frequencies. The external
potential is also another factor that affects the nonlinearity.
Figure 18(b) demonstrates the numerical results given at a
higher external potential. The distribution of ¢,, obtained by
the 2D calculation now deviates from the 1D PNP result in
particular for 0<¢/T<1/8 and 1/2=<1¢/T<15/8. The reason
is due to the non-neutral character of the middle layer as
explained below.

Figures 19(a) and 19(b) show the development in time of
the spatial distributions of the concentrations in the middle
layer for weakly and strongly nonlinear cases, respectively.
Since the diffusivity and frequencies are the same for both
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FIG. 19. Development of the cation (solid) and anion (dash-dot)
concentrations within the middle layer obtained from the full 1D
calculation with the condition given in the caption of Fig. 18; (a) a
weakly nonlinear case with V/,=0.25 V and (b) a strongly nonlin-
ear case with V:;O=2 V.

cases, the middle layer extends from the electrode wall with
the same distance, say up to y=0.3 or y*=3.8 um; on the
other hand, the inner layer is measured to span only up to
y=0.02 or y*=0.25 um. For the weakly nonlinear case
[Fig. 19(a)], both the cation and anion concentrations deviate
only slightly from the bulk value 1 in the middle layer. More
importantly, the two ions show temporally identical distribu-
tions leading to the neutralized character of the layer. There-
fore this result does not contradict the assumptions required
for the asymptotic analysis for the weakly nonlinear cases
which is employed in our 2D calculation, and so the agree-
ment between the two results was excellent, as shown in Fig.
18(a). It also implies that the small nonzero concentration
gradient shown in Fig. 19(a) should provide a negligible ef-
fect on the validity of the Laplace equation (7) for the middle
layer. On the other hand, the strongly nonlinear case [Fig.
19(b)] reveals significantly different distributions between
the two ions. During the interval 0<t/T<1/8, the anion
shows a higher concentration than the cation in the middle
layer; the results of #/T=1/8 are similar to those of /T
=1/16 but are not shown in the figure to avoid confusion. As
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FIG. 20. Spatiotemporal distribution, within the inner and
middle layers, of the perturbed potential gradient d¢/dy
—(d¢/ dy),, obtained from the 1D PNP calculation with the condi-
tion given in the caption of Fig. 18; (a) a weakly nonlinear case
with V;O=0.25 V and (b) a strongly nonlinear case with V;():Z V.
The contour levels are 0.1, 0.3,... for positive values (solid) and
—-0.1,-0.3,... for negative values (dashed).

explained in [1], during this interval, the anions are attracted
to the electrode while the cations are repelled from it. Simul-
taneously, the bulk gives anions to and takes cations from the
middle layer through the conduction process. Since the elec-
trode does not need the cations, complete depletion of the
cations can take place starting from the inner-layer side dur-
ing this interval; Fig. 19(b) shows that the depletion extends
to y=0.03 at #/T=1/16. On the other hand, the anions are
still required by the inner layer during this interval, and so
the anion concentration must show a nonzero level in order
for the conduction process to take place conveying the cat-
ions from the bulk to the inner layer; since the distribution of
the cation concentration is almost flat near the inner-layer
side, transport of ions by the diffusion is almost negligible
there.

Non-neutralized distribution of the middle layer makes
the layer charged contrary to the basic assumptions made for
the asymptotic analysis, and this in turn results in the non-
uniform potential gradient in the middle layer. Figures 20(a)
and 20(b) show spatiotemporal distributions of the perturbed
potential gradient, d¢/dy—(d¢/dy),,, obtained from the 1D
PNP calculation. For the weakly nonlinear case, Fig. 20(a),
its magnitude remains almost zero all over the middle layer
indicating the neutralized middle layer. For the strongly non-
linear case, Fig. 20(b), however, the potential gradient differs
from that of the bulk over a significantly wide range of space
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especially for the time intervals, 0<¢/T<1/8 and 1/2
=<1t/T<5/8. During the interval 0=<¢/T<1/8, the potential
gradient in the bulk (d¢/ dy),, itself is negative, and so d¢/ dy
is also negative and its magnitude should be larger than that
of (d¢/dy),,. Considering the fact that the potential gradients
in the Stern and inner layers are almost unaffected by the
middle-layer charging and the potential during the given time
interval remains positive everywhere, we can understand that
the magnitude of the potential at the outer edge of the middle
layer |¢,,| must be decreased by the middle-layer charging
during the given time interval, as shown in Fig. 18(b). The
situation is reversed for the other time interval 1/2<¢/T
<5/8, and we can also understand the decrease of |¢>W , as
shown in Fig. 18(b).

The concentration polarization found in the transport of
ions through ion-exchange membranes [21-26] or nanochan-
nels [27,28] is also known to reveal similar phenomenon. In
general, at a steady state one side of the perm-selective mem-
brane shows enrichment of ions whereas the other side
shows depletion of ions; but both sides are still neutralized at
low external potentials. However, when the external potential
is increased the depletion side shows complete depletion of
anions (for the case where the cations are selected to pass
through the membrane), and the cation distribution there be-
comes almost uniform at a low level; this region is called the
“extended space charge” region [23]. In the present study we
measure from Fig. 20(b) that this region extends to as much
as y=0.05 or y*=63 nm, if we select 0.1 as the magnitude
of the contour level for the border between the extended-
space-charge region and the remaining neutralized middle
layer. Interestingly enough that region is reported to produce
electro-osmotic flow of the second kind [23], which allows
the overlimiting current and the enhancement of mixing [27]
through the electroconvective instability [23]. It will be in-
teresting to work on this possibility for the ac electroosmotic
flows, too.

IV. CONCLUSIONS

In this paper we have presented the numerical method for
obtaining the slip velocity distribution on the electrode walls
for ac electro-osmotic flows. The algorithm interactively
solves the Laplace equation for the bulk potential and the
dynamical equation for the surface charge density on the
electrode wall. We have developed both explicit (for the Car-
tesian coordinates) and implicit (for the curvilinear coordi-
nates) methods in coupling the two equations. In the former
method, the surface charge density is first obtained by solv-
ing the dynamical equation, which is then used to calculate
the potential drops across the Stern and inner layers and the
accumulation of charges at the interface between the two
layers. Those results are then used in determining the poten-
tial at the electrode walls, which is next used as boundary
conditions for the Laplace equation. The solution of the
Laplace equation then provides normal gradient of the poten-
tial on the electrode walls, which is in turn used in solving
the dynamical equation for the surface charge density. In the
implicit method, the dynamical equation is solved simulta-
neously in coupling with the Laplace equation. Such an im-

046309-16



NUMERICAL PREDICTION OF AC ELECTRO-OSMOTIC ...

plicit treatise of the variables avoids the numerical instability
encountered in the explicit method when the grid size is
decreased to resolve the region near the leading edge of the
electrodes.

The code is then applied to a 2D problem around coplanar
electrodes under ac. We first validated our code by observing
a slight variation of numerical results upon grid refinement.
Further validation is confirmed by comparing the numerical
results given from the Cartesian coordinates and those from
the transformed coordinates.

The effect of the ac frequency on the slip velocity was
shown to be distinctively different for the subcritical and
supercritical cases. At subcritical frequencies, slow variation
of the electrode potential allows relatively long time for the
ions to charge and screen the electrode interfaces so that the
slip velocity remains at low level with flat distribution. On
the contrary, at supercritical frequencies, fast switching of
the electrode potential does not allow enough time for the
ions to charge the inner layer except for the region near the
leading edge, where intense normal gradient of the potential
compensates the short-time charging. Therefore the super-
critical frequency yields sharp variation of the slip velocity
near the leading edge. The fundamental reason for such dif-
ference in the slip velocity distribution is further addressed
by using the spatiotemporal distribution of the potential
drops and simplified equations.

The electrode length has almost no effect on the slip ve-
locity at supercritical frequencies, but a significant effect is
expected at subcritical frequencies giving smaller slip veloc-
ity with shorter electrodes.

An increase of the Stern-layer thickness is found to bring
the decrease of the slip velocity and increase of the critical
frequency. However, simply adjusting the Stern-layer thick-
ness cannot successfully match the numerical results with the
experimental ones.
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Since the ion adsorption causes a jump in the normal gra-
dient of the potential at the interface between the Stern and
inner layers, the amount of the potential drop in the inner
layer can be decreased without bound by increasing either
one or both of the two adsorption parameters. This in turn
leads to a decrease of the slip velocity. It was found that
while the slip velocity is decreased without bound with an
increase of the parameter F:mx, the decrease of the slip ve-
locity is saturated with the increase of the parameter a*
above a critical vale.

Although our adsorption model turned out to result in a
very successful match between the numerical and experi-
mental data for the slip velocity, the relevance of the adsorp-
tion phenomenon must be proved in the physicochemical
point of view probably through the use of the experimental
measurement and/or observation. We also need experimental
studies and/or molecular-dynamic simulations to collect data
for the effect of the various parameters such as the surface
roughness of electrodes on the adsorption phenomenon.

Our 2D calculation results are in excellent agreement with
those of the 1D PNP calculation at a weakly nonlinear re-
gime. For a strongly nonlinear case, however, the two results
show a discrepancy at particular intervals of time, at which
in the middle layer co-ions are completely depleted and the
counterions are almost uniformly distributed at a low level,
the phenomenon being similar to the so called extended-
space-charge region coined by the researchers involved in
the perm-selective membranes.
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